NOTE

Pelagic larval growth rate impacts benthic settlement and survival of a temperate reef fish

Jeffrey S. Shima1,*, Amy M. Findlay2

1Department of Ecology, Evolution, and Marine Biology and the Marine Science Institute, University of California, Santa Barbara, California 93106, USA
2Watershed Resource Center Manager, Community Environmental Council, 930 Miramonte Dr., Santa Barbara, California 93109-1348, USA

ABSTRACT: Larvae of marine reef organisms settling into benthic habitats may vary greatly in individual quality. We evaluated potential effects of variation in larval growth rate (1 metric of quality) on larval duration, size-at-settlement, and post-settlement survival of recently settled kelp bass Paralabrax clathratus. We sampled kelp bass daily and weekly from standardized collectors located near the Wrigley Institute for Environmental Studies, Santa Catalina Island, to characterize larval traits of settlers and surviving recruits. Using growth models to fit trajectories of larval otolith growth, we estimated instantaneous larval growth rates and found that these values were good predictors of larval duration and juvenile survival. Kelp bass that grew rapidly as larvae settled ~8.5 d sooner than the slowest growing individuals; both groups had similar sized individuals at settlement, but fast growing larvae experienced enhanced survival during the first 5 d after settlement relative to slower growing larvae. There is growing evidence suggesting that larval experience continues to exert demographic consequences on subsequent life stages. This helps to explain some of the spatial and temporal variability that characterizes recruitment in marine systems.

KEY WORDS: Juvenile performance · Larval quality · Larval traits · Metamorphosis · Physiological condition · Post-settlement survival · Recruitment · Reef fish

Body size and physiological condition of adult reef fishes have long been recognized as important determinants of their reproductive capacity (reviewed in Wootton 1990). Evidence from many marine reef organisms suggests that parental condition can also influence egg provisioning and hence the ‘quality’ of individual progeny. Recent studies demonstrate that variation in larval quality arising from parental effects can impact larval growth (McCormick 1999), development time (Kerrigan 1997, Meidel et al. 1999), and survival (Grønkjær & Schytte 1999, McCormick 1999, Park et al. 1999, Riveiro et al. 2000). Similarly, the pelagic larval environment (e.g. temperature, food availability, oceanographic features) may also alter rates of larval growth (Hovenkamp & Witte 1991, Benoît & Pepin 1999, Otterlei et al. 1999, Keller & Klein-MacPhee 2000, Rissik & Suthers 2000), development time (Benoît & Pepin 1999, Lamare & Barker 1999, Otterlei et al. 1999, Searcy & Sponaugle 2000), and survivorship to settlement (Meekan & Witte 1991, van der Veer & Witte 1999, Keller & Klein-MacPhee 2000) in a variety of marine taxa. However, comparatively few studies have addressed the role of larval quality on the performance (e.g. growth and survivorship) of benthic juvenile stages of marine reef organisms. Several studies of marine invertebrates suggest that a prolonged larval life (i.e. delayed metamorphosis) may reduce post-settlement performance (reviewed in Pechenik 1990, Pechenik et al. 1998), but this observation does not appear to hold true for some reef fish species (Victor 1986a, Cowen 1991). While effects of larval quality on juvenile growth rates have

*Present address: School of Biological Sciences, Kirk Building, Kelburn Parade, PO Box 600, Victoria University of Wellington, Wellington, New Zealand. E-mail: jeffrey.shima@vuw.ac.nz

© Inter-Research 2002 · www.int-res.com
been explored in a handful of studies (e.g. Chambers et al. 1988, Bertram et al. 1993, 1997, Jarrett & Pechenik 1997, Searcy & Sponaugle 2000, Phillips in press), far fewer studies have attempted to directly address the role of larval quality on post-settlement survival (but see Emlet & Hoegh-Guldberg 1997, Pechenik 1997, Searcy & Sponaugle 2000, Phillips in press), far fewer studies have attempted to directly address the role of larval quality on post-settlement survival (but see Emlet & Hoegh-Guldberg 1997, Pechenik 1997, Searcy & Sponaugle 2000, Phillips in press), far fewer studies have attempted to directly address the role of larval quality on post-settlement survival (but see Emlet & Hoegh-Guldberg 1997, Pechenik 1997, Searcy & Sponaugle 2000, Phillips in press). Our primary goal in this study was to explore the consequences of individual variation in larval growth rates on settlement and post-settlement survival of reef fish. We base our analyses on information gained from rates on settlement and post-settlement survival of reef consequences of individual variation in larval growth (Searcy & Sponaugle 2001, Phillips in press).

Our primary goal in this study was to explore the consequences of individual variation in larval growth rates on settlement and post-settlement survival of reef fish. We base our analyses on information gained from rates on settlement and post-settlement survival of reef consequences of individual variation in larval growth (Searcy & Sponaugle 2001, Phillips in press).

Materials and methods. Study system and field collection: Our research focused on kelp bass _Paralabrax clathratus_ settlers and juveniles collected from sites near the Wrigley Institute for Environmental Studies, Santa Catalina Island (33° 27' N, 118° 29' W). Kelp bass are common residents of rocky reefs off the coast of California. This species spawns from late spring to early fall, with peak reproduction occurring from July to September (Walker et al. 1987), and routinely settles to our study sites following ~30 d pelagic larval development period (McClean 1999). Like most reef fish larvae, kelp bass must actively forage through much of their larval period in order to complete development. Competent kelp bass larvae normally settle to the canopies of giant kelp _Macrocystis pyrifera_, but will readily settle to standardized artificial collectors constructed of plastic mesh (described in Carr 1991, McClean 1999). We used replicate standardized collectors (n = 5 for 1997; n = 10 for 1998) deployed ~50 m apart and ~10 m off the edge of the reef (e.g. over sand bottom) to sample daily settlement and weekly recruitment of kelp bass at 2 sites (‘Rippers Reef’ and ‘Habitat Reef’) separated by ~10 km. Settlement was quantified as the total number of fish removed daily from collectors located on Habitat Reef at weekly intervals between 16 July 1998 and 15 August 1998. For all collected fish, we recorded standard lengths to the nearest 0.01 mm.

Otolith analyses to estimate larval and post-larval attributes: Sagittal otoliths were removed from all collected fish and mounted medial side down on glass slides using cyanoacrylate (Superglue®) medium. Otoliths that could not be clearly viewed were polished using 3 micron lapping film (3M®) mounted on an 8 inch lapping wheel (Model 920, South Bay Technologies) until increments became clearly visible from the core to the edge of the otolith. Previous studies have validated the presence of daily growth increments (i.e. rings) for this species (Cordes & Allen 1997), and sub-daily increments were distinguished from daily increments using the criteria of Campana (1984).

Estimates of larval duration and daily growth: All otolith characteristics were quantified using an Olympus® transmitted light microscope at 200 to 400× with a rotating polarized filter. Images of each otolith were captured using a digital frame-grabber and measurements were made on a 19 inch Trinitron® monitor using a digital image analysis system (ImagePro® v4.0). All measurements were made along the longest radius (from core to outer edge) of each otolith. Positions of daily increments and the settlement check (for weekly recruits only, using criteria of Cordes 1992) along this axis were visually estimated and digitally tagged; the width of each increment (i.e. the distance between successive tags) was calculated and exported to a spreadsheet by the image analysis software. This information allowed us to estimate larval duration, post-settlement age, and daily increment width. Because kelp bass do not appear to produce daily otolith increments until the third day after hatching (Cordes & Allen 1997), a correction factor of 2 d was added to all estimates of pelagic larval duration. Otoliths were read by only 1 person, and repeated blind estimates of daily increment positions on a random sample (n = 10) of these otoliths, made >30 d after first reading, produced estimates of (1) larval duration that differed by <0.4 d (1.3% deviation) on average, and (2) mean daily increment widths that differed by <0.09 µm (1.6% deviation) on average.

Exponential model to estimate larval growth rates: Daily increment widths during the larval development of kelp bass showed an accelerating relationship with age, and we fitted overall larval growth rates using an exponential growth model:

\[L_t = a \times \exp^{bt} \]

where \(L_t \) is the otolith increment width (µm) at time \(t \) (d) in the larval stage, \(a \) is the estimated width at \(t = 0 \), and \(b \) is the estimated instantaneous larval growth rate. Parameter \(b \) measures the ‘per µm’ rate of increase over
Effects of larval growth rate on settlement and post-settlement survival: All estimates of growth rates were based on otolith characteristics, and in order to avoid well-documented statistical problems (e.g. Thorrold & Milicich 1990, Stevenson & Campana 1992, Secor et al. 1995, Shafer 2000), these estimates were not converted to somatic growth rates. However, the existence of a relationship between otolith growth and somatic growth underlies our interpretations of these data. We therefore used regression to evaluate the relationship between otolith radius and fish standard length for fish collected immediately after settlement (i.e. with no post-settlement growth period); a positive relationship between these metrics is consistent with the widely held notion that otolith growth and somatic growth are often coupled with one another (but see Morales-Nin 2000). These and all subsequent regression and ANOVA analyses were conducted using the GLM procedure of SAS v8.2.

Larval growth rate, larval duration and size-at-settlement: To evaluate the potential influence of larval growth rate on development time, we explored the relationship between pelagic larval duration (number of increments preceding the settlement check) and larval growth rate (parameter b). Because these attributes could be directly estimated for individuals regardless of their post-settlement age, all collected fish were used for this regression analysis. We evaluated the relationship between size-at-settlement (fish standard length) and larval growth rate using only fish collected at settlement (i.e. without a period of post-settlement growth).

Larval growth rate and post-settlement survival: We explored the potential influence of larval growth rate on post-settlement survival by evaluating shifts in cohort quality (i.e. average larval growth rates for a cohort) as a function of post-settlement cohort age. Such shifts are consistent with selective mortality that may operate differentially on individuals as a function of some attribute of their recent larval histories (e.g. growth rates, size at settlement, lipid stores). Individuals collected from recruitment collectors on Habitat Reef were classified by their post-settlement age (i.e. by the number of otolith increments visible after the settlement check; all samples were determined to be either 3, 4, or 5 d old). We then explored variation in larval growth rates among age categories using ANOVA.

Results. Otolith radii measured along their longest axes were a good predictor of the standard lengths of kelp bass measured immediately following settlement ($F_{1,96} = 243.5, \alpha = 0.05, p < 0.0001$; Fig. 1). This result suggests that otolith growth rates averaged over ~30 d are likely to be a reasonable proxy for somatic growth rates for recently settled kelp bass.

Effects of larval growth rates on larval duration and size-at-settlement: Pelagic development time: Larval duration was negatively correlated with larval growth rate (parameter b) for recently settled kelp bass ($F_{1,126} = 72.93, \alpha = 0.05, p < 0.0001$; Fig. 2a). Individuals exhibiting the highest larval growth rates as evidenced by otolith characteristics settled from the pelagic environment ~8.5 d sooner than the slowest growing individuals (based upon best-fit linear regression).

Size-at-settlement: Kelp bass size-at-settlement was poorly related to larval growth rates (Fig. 2b). The relationship was marginally non-significant ($F_{1,96} = 3.79, \alpha = 0.05, p = 0.054$), and although statistical power was poor ($\beta = 0.49$), the absence of a strong relationship between growth rate and size-at-settlement is likely at-
tributable to the observation that rapidly growing fish appear to settle to benthic habitats sooner (cf. Fig. 2a) rather than delaying settlement to realize a larger size.

Effects of larval growth rates on post-settlement survival: Average larval growth rates varied with post-settlement age of individuals \(F_{2,22} = 15.78, \alpha = 0.05, p < 0.0001; \text{Fig. 3}\). Recruits collected after 3 d of life on the reef had instantaneous larval growth rates of 0.081 \(\mu m \mu m^{-1} d^{-1}\). Recruits that were 4 d old had growth rates of 0.087 \(\mu m \mu m^{-1} d^{-1}\), while recruits that survived on Habitat Reef for 5 post-settlement d had significantly higher larval growth rates, estimated at 0.102 \(\mu m \mu m^{-1} d^{-1}\). Assuming that fish in different age groupings were derived from the same distribution of potential larval growth rates, the significant trend in larval growth rates is consistent with selective mortality that acts with greater frequency upon juveniles that were slow-growing during their larval development.

Discussion. Our results indicate that larval quality impacts settlement and post-settlement survival of a reef fish. Growth rates of larval kelp bass varied substantially over the course of our sampling, and fast larval growth was correlated with reduced larval duration and enhanced survivorship after settlement.

Rapid larval growth rates may be indicative of favorable parental effects (e.g. maternal condition, genetics) and/or pelagic conditions, and may therefore covary with physiological condition at settlement to influence post-settlement survival. Alternatively, protracted larval development (perhaps determined by a larva’s encounter rate with suitable habitat) may exact costs that are reflected in survivorship after settlement. Whether larval growth rates determine larval durations, or whether either of these may be implicated as direct causes for variation in post-settlement survival is impossible to ascertain given the correlative nature of our evidence. However, these results contribute to a growing body of evidence (e.g. Emlet & Hoegh-Guldberg 1997, Pechenik et al. 1998, Searcy & Sponaugle 2001, Phillips in press) suggesting that larval experience has demographic consequences for subsequent life stages.

Understanding the consequences of variation in larval quality at settlement may help to explain some of the spatial and temporal variation in recruitment that seems to be a hallmark of many marine reef organisms.
(Loosanoff 1964, Caffey 1985, Cowen 1985, Doherty 1991, Caley et al. 1996). Variation in larval quality at settlement may influence post-settlement density-dependent interactions that regulate local populations (e.g. Shima & Osenberg unpubl.), and recent work on marine invertebrates suggests that consequences of variability in larval quality at settlement may be contingent upon post-settlement habitat quality (Moran & Emlet 2001).

Furthermore, larval quality may play an important role in marine metapopulations. Local populations that produce larvae of higher quality, or populations that export larvae into pelagic conditions that result in higher larval quality may contribute proportionally more offspring to subsequent generations than local populations producing larvae of relatively poor quality. Similarly, coupling between local larval production and recruitment (i.e. self-recruitment) may be enhanced if hydrographic features aggregate and retain larvae in high food environments, resulting in retained larvae that are of higher fitness relative to larvae that have dispersed over greater distances (e.g. Swearer et al. 1999). Understanding the patterns and consequences of variations in larval quality may be critical to the design and positioning of effective marine reserves.

Our results characterize individual variation in life-history traits to estimate growth rate curves. Pooling of data can mask evidence of selective mortality (Crowder et al. 1992, Litvak & Leggett 1992, Pepin et al. 1992, Chambers & Miller 1995). Overall, this work suggests a greater need to incorporate individual-based metrics, ideally, coupled with manipulative experiments to determine the role of larval legacies on the recruitment success of marine reef organisms.

Acknowledgements. Field work for this project was supported by a graduate internship to A. Findlay (formerly McLean) from USC Wrigley Institute for Environmental Studies on Santa Catalina Island, funding from the Nearshore Marine Fish Research Program at CSU Northridge, and a grant from the Student Projects Committee at CSU Northridge. Field work would not have been possible without the kind support and advice of L. Allen, and generous assistance of S. Anderson, D. Conlin, P. Dixon, K. Flanagan, S. Grunwald, J. Hooykaas, M. Hughes, J. Malone, H. Stewart, K. Wisenbaker, and C. Yonker. Logistical support was kindly provided by the staff at Wrigley Institute. Support and facilities for otolith analyses were provided by PISCO (Partnership for the Interdisciplinary Study of Coastal Oceans—a grant from the David and Lucile Packard Foundation), and the Santa Barbara Coastal LTER Program (OCE 9982105 to D. Reed). M. Sheehy and S. Swearer generously provided advice on otolith preparation and analysis, and versions of this manuscript greatly benefited from discussions with N. Phillips, S. Gaines, S. Swearer, and the comments of A. Brooks, J. Byers, N. Phillips, C. Peterson, and 2 anonymous reviewers. This paper is contribution number 80 from PISCO, 221 of the Wrigley Institute of Environmental Studies.

LITERATURE CITED

Pepin P, Shears TH, Lafontaine Y de (1992) Significance of body size to the interaction between a larval fish (Mallotus villosus) and a vertebrate predator (Gasterosteus aculeatus). Mar Ecol Prog Ser 81:1–12

Thorrold SR, Milicich MJ (1990) Comparison of larval dura-

Victor BC (1986a) Larval settlement and juvenile mortality in a recruitment-limited coral reef fish population. Ecol Monogr 56:1435–1460

Editorial responsibility: Charles Petersen (Contributing Editor), Morehead City, North Carolina, USA

Submitted: July 25, 2001; Accepted: February 21, 2002

Proofs received from author(s): May 10, 2002